การปรับปรุงคุณค่าทางโภชนาการของข้าวเกรียบโดยการเติมแป้ง เมล็ด้าายไร้ต่อมพิษ

Use of Glandless Cottonseed Flour to Improve the Nutritive Value of Cassava Cracker

เพลินใจ ตังคณะกุล ${ }^{1}$ สมจิต อ่อนเหม ${ }^{1}$ และ ดวงจันทร์ เฮงสวัสดิ์ ${ }^{1}$
Plernchai Tangkanakul, Somchit Onhem and Duangchan Hengsawadi

Abstract

The objective of this study was to improve nutritive value of cassava cracker by substituting 5, $10,15,20$ and 25% (w / w) of cassava flour with low fat glandless cottonseed flour (GCSF). The result showed that bulk density of cassava cracker fortified with $5-25 \%$ were higher but their thickness expansion were less than control cracker. The substitation of 10% GCSF in the mixture of cassava cracker was accepted by the panelists which average acceptability score was 4.0 (like very much). Protein and fat contents of $5-25 \%$ GCSF-cassava cracker ranged from 3.69-11.14 \% and 1.11-3.54 \%, respectively, compared to those of control cracker which were 1.88% and 2.14% respectively.

Key words : glandless cottonseed, cracker, nutritive value

บทคัดย่อ

 แป้งเมส็คื้าาบ!ร้ท่อมพิษชนิดใขนันต่ำในปริมาแร้อยละ 5101520 และ 25 ของ น้ำหนักนเท้งมันสำปะหลัง
 ให้ควาพหนาแน่น (Bulk density) ของข้าวเรียบหพ่ม ขึ้น ขณะที่การขยายตัว (Expansion) ของควางหนาลต

ลงเมื่อเปรียบเทียบกับข้าวเกรียบแป้งมันสำปะหสังล้วน การเติมแป้งเมล็ค้้ายไร้ต่อมพิษในปริมาณร้อยละ 10 ของน้ำหนักแป้ง จะได้กะแนนการยอมรับ 4.0 คะแนน (ชอบมาก) ปริมาณโปรตีน และไขมันของข้าวกรียบที่ เติมแปปงเมล็ดฝ้าย!ไร้ต่อมพิย ร้อยละ $5-25$ มีค่ายยู่ใน ช่วงร้อยละ $3.69-11.14$ แสะ 1.11-3.54 ตามลำดับ เปรียบเทียบกับข้าวเกรียบแป้งมันสำปะหลังล้วน ซึ่งมี โปรตีนและไขมันร้อยละ 1.89 แสะ 2.14 ตามลำดับ

[^0]
คำนำ

ข้าวเกรียบ เป็นอาหารว่างประเภทขบเคี้ยวชนิด หนึ่งที่นิยมรับประทานกันยย่างแพร่หลายในแถบประเทศ ทางยเซีย โดยเฉพาะอย่างยิ่งในประเทศไทย ประชาชน ส่วนใหญู่คุ้นเคยมานานถึงแม้ว่าใน ปัจถุบันนี้จะมี อาหารขบเคี้ยวประเภทต่างๆ มากมายที่ใช้ททคโนโลยีการ ผลิตั้นสูงวางจำหน่ายอย่างแพร่หลาย จนประชาชนโดย เฉพาะเต็กๆ หรือกลุ่นวัยรุ่นบางคนอาจะะไม่รู้กักข้าว เกรียบไทยๆ ไปแล้วกี่ใด้ ทั้งๆ ที่ข้าวเกรียบเป็นผลิกรัณฑ์ ที่สามารถผลิตเพื่อบริโภกเองได้ในระดับกรัวเรือนหรือ ผลิตจำหน่ายเป็นอุตสาหกรรมขนาดย่อนได้ โดยใช้วัตกุ คิบภายในประเทศ ส่วนประกอบหลักของข้าวเรียยไไ่ ว่าจะเป็นข้าวเกรียบกุ้ง ข้าวเกรียบปลา หรือข้าวเกรียบ ผลไไม้ชนิคต่างๆคือแป้งมันสำปะหลัง ส่วนประกอบ อื่นๆ จะมีอยู่บ้างเพียงเล็กน้อย โดยหากเป็นข้าวเกรียบที่ เติมเนื้อสัตร์ จะเติมลงไปไในปริมาณร้อยละ $10-15$ ของ น้ำหนักแป้ามมันสำปะหลัง หรือบางแห่งจะมีแต่เพียงแป้ง มันสำปะหลังพพียงอย่างเดียว แล้วปรุงแต่งกลิ่นรส โตย ผสมสารปรุงรส เช่น การเดิมกลิ่น กุ้ง ปลาบลง ตังนั้น องค์ประกอบทางเคมีของข้าวเกรียบส่วนใหญู่ชะเป็น คาร์ไบไฮเตรทร้อยละ 97.30 ไขมันร้อยละ 0.84 และ โปรตีนมีเพียงร้อยละ 0.55 เท่านั้น (สมพาย และคณะ 2634)

เพื่อให้ประชาชนไค้รับประโยชน์ำกกการบริโภค ข้าวเกรียบ นอกเหนือจากความเอร็ดอร่อยเพียงอย่าง เดียว จึงน่าจะมีการปรับปรุงคุมค่าทางโกชนาการของ ข้าวเรรียบให้สูงขึ้นโคยเฉพาะการเพิ่มสารอาหารโปรตีน ซึ่งมีปริมาณน้อยในข้วเเกรียบทั่วไป จากการศึกษา พบ ว่าเป้งเมลีคฝ้ายไร้ต่อมพิษ มีปริมาณโปรตีนสูงถึงร้อย ละ 39.3 และคุณภาพของไปรตีน พบว่า PER (Protein Efficiency Ratio) ของ Defatted glandless cottonseed flour มีค่าอยู่ระหว่าง 2.1-2.3 (Lusas and Jividen, 1987) ซึ่งประชาษนในแถบทวีปอาฟริกาคุ้นเคยกับการ นำแป้งเมล็ดฝ้ายมาเป็นอาหารมนุษย์ไนฤดูกาลขาคแคลน

อาหารมาเป็นเวลานาน มีการนำมาผสมในผลิตภัมฑ์ ขนมอบ่้ด้ถึเงร้อยละ 20 หรือทำเป็นอาหารขบเคี้ยวชนิด ต่างๆ (Bourely, 1987) โดยเฉพาะอย่างยิ่งในประเทศ Mali และ Chad มีการนำแป้งเมล็คื้าย!ร้ต่อมพิษทำ เป็นอาหารเสริมเลี้องเด็กที่ขาคสารอาหาร ปรากฎว่า ประ สบผลสำเร็จอย่างดี ด้วยหหตุนี้แป้งเมล็คฝ้ายไไ้ต่อมพิษดึง น่าะะเป็นแหล่งสารอาหารโปรตีนที่ดีและคารจะนำมาใช้ การศึกษาครั้งนี้งึงมมุ่งที่จะนำแป้งเมลีคค้ายไร้ต่อมพิษมา เติมลงในส่วนประกอบของข้าวเกรียบเพื่อปรับปรุงคุณค่า ทางโกชนาการของข้าวเกรียบให้มีปริมาแโปรตีนสูงขึ้น อันจะทำให้ผู้บริโภคได้รับประโยชน์อย่างเต็มที่

อุปกรณ์และวิธีการ

อุปกรณ์

1. แป้งมันสำปะหลัง ตราปลามังกร
2. แเป้งเมล์คฝ้ายไร้ต่อมพิษชนิดไขมันต่า (Low fat glandless cottonseed flour = Low fat-GCSF) เตรียมจากเมล์คฝ้ายไไร้ ต่อมพิษ พันทุ $\operatorname{IRCT} 409$ และ 410 ยากไร่ สุวรรณ อำเงอปากช่อง จังหวัคนครราชสึมา วิธีเตรียม แสคงใน Figure 1
3. เครื่องปรุงรส : พริกไทย กระเทียม เกลือ
4. อุปกรณ์สำหรับทำข้าวกรียบ : กะละมัง รังถึง มีด ตลฯ

วิธีการ

1. การเตรียมแย้งเงเมล็คฝ้ายไร้ต่อมพิษชนิดไขมันต่ำ แสจงใน Figure 1 (Reungmaneepaitoon, 1993)
2. เตรียมข้าวเกรียบผสมแป้งเมล็คฝ้ายไร้ต่อมพิษ ชนิดไขมันต่ำในปริมาณร้อยละ 5101520 และ 25 ของน้ำหนันแป้งมมันสำปะหลัง วิธีทำแสคงไน Figure 2

Fuzzy glandless cottonseed

Dehull scparation by stone mill,
Vibroscreen separator

Glandless cottonseed kernels

Clean with water 3-4 times

Dry in cabinet dryer at $50-60^{\circ} \mathrm{C}$ for 10 hours

Dried glandless cottonseed kernel

Press by hydraulic press at pressure $10-11$ tons

Grind with pin mill (80 mesh) Low fat glandless cottonseed flour

Figure 1 low chart for production of low fat glandless cottonseed flour.
3. ทคสอบคุณภาพของความเกรียบ
3.1 ความหนาแน่น (Bulk density) : ทอตข้าว เกรียบในน้ำมันพืชที่อุณหภูมิประมาณ $150^{\circ} \mathrm{C}$ นานประมาณ

Bulk density (gm/100 ml) $\quad=\quad$ Weight after frying (gm)
วินาที แลวนำมาหาปริมาตรโดยการแทนที่เมลิตงา ชง น้ำหนักข้าวเกรียบ คำนวณค่าความหนาแน่นโดยใช้สูตร

Figure 2 Flow chart for the production of cassava cracker.
$\times 100$
Volume after frying (ml)
3.2 การขยายตัว (Expansion) :- วัตความ รอบๆ แผ่นข้าวเกรียบ 4 ตำแหน่ง ใช้ค่าเฉลี่ยตัวอย่าง หนาของความเกรียบ (มม.) ก่อนและหลังทอดน้ำมันที่ ละ 10 แผ่น จากนั้นคำนวณโคยใช้ สูตร (Yu, 1981) $150^{\circ} \mathrm{C}$ โคยใช้เวอร์เนียร์ วัดความหนาที่ตำแหน่งต่างๆ

$\%$ expansion $=$ Thickness after puffing - Thickness before puffing

Thickness before puffing
4. ประเมินผลการยอมรับทางประสาทสัมผัส โดยการทคสอบ ผู้ทคสอบจำนวน 20 คน เป็น นักวิจัย และเจ้าหน้าที่ในสถาบันค้นคว้าและพัฒนาผลิตภัณฑ์ อาหาร ทคสอบข้าวเกรียบที่ทอดแล้ว ใช้แบบชิม ชนิด $5=$ hedonic scale โคยมีรายละเอียตดังนี้:-

สี (Color)	: เหลืองแก่	$=1$	คะแนน
	$:$ ขาว	$=5$	คะแนน
กลื่น (Odour)	: สาบมาก	$=1$	คะแนน
	: ไม่มีกลิ่นสาบ	$=5$	คะแนน
รสชาติ (Flavor) : ขมมาก	$=1$	คะแนน	
	$:$ ไม่มีรสขม	$=5$	คะแนน

: กรอบแข็งมากที่สุศ $=1$ คะแนน
: กรอบแข็งน้อยที่สุด $=5$ คะแนน (ไม่แช็ง)
การพองตัว (Puffness)
$\begin{array}{ll}\text { : พองน้อยที่สุด } & =1 \text { คะแนน } \\ : \text { พองมากที่สุด } & =5 \text { คะแนน }\end{array}$ การยอมรับ (Acceptability)
: ไม่ยอมรับ $=1$ คะแนน
: ยอมรับมากที่สุค $=5$ คะแนน
การวิเคราะห์ทางสถิติ ใช้ Duncan's multiple range Test
5. วิเคราะห์องค์ประกอบทางเคมีได้แก่ ความ ชื้น โปรตีน ไขมัน เถ้า และกากใย (AOAC, 1990)

ผลและวิจารณ์

ผลการศึกษาใน Table 1 พบว่า ปริมาณแป้ง เมล็ดค้้ายไร้ต่อมพิษชนิตไขขมันต่ำที่เติมลงในส่วนผสมของ ข้าวเกรียบจะทำให้ความหนาแน่นของข้าวเกรียบเพิ่มมาก ขึ้น โคยเฉพาะช้าวเกรียบที่เติมแป้งเมล็ดฝ้ายไร้ต่อมพิษ

ร้อยละ 25 ของน้ำหนักแป้ง มีค่าความหนาแน่นมากที่ สุด คือ 50.9 กรัม/ 100 มล. เปรียบเทียบกับข้าวเกรียบ แป้งมันสำปะหลังล้วน มีค่าเท่ากับ 17.6 กรัม $/ 100$ มล. ในขณะที่การขยายตัวของความหนาของข้าวเกรียบจะลด ลงเมื่อปริมาณแป้้งเมล็ดฝ้าย่าร้ต่อมพิษเพิ่มมากขึ้น เช่น เตียวกับผลการศึกษาของ ตวงใจ และ นงนุษ (2533) ที่พบว่าข้าวเเรียบปลาที่มีปริมาณปลามากขื้นการขยายตัว จะลคลง อธิบายได้ว่าเกิคจากการที่โปรตีนไปจับกับแป้ง ทำให้แป้งไม่ขยายตัว (Yu, 1981)

ผลการทดสอบการยอมรับทางประสาทสัมผัส แสดงใว้ไน Table 2 พบว่าการเติมแป้งเมล็ดฝ้ายไร้ต่อม พิษปริมาณร้อยละ $5-25$ ของน้ำหนักแป้ง ทำให้สีของ ข้าวเกรียบแตตตต่างจากข้าวเกรียบแป้งมันสำปะหลังล้วน อย่างมีนัยสำคัญทางสถิติ $(\mathrm{P}<05)$ เมื่อปริมาณแป้ง เมล็ดฝ้ายไร้ต่อมพิษเพิ่มมากขึ้นสีของข้าวเกรียบจะเป็นสี เหลืองเข้ม การเติมปริมาณแป้งเมล็คฝ้ายไร้ต่อมพิษตั้งแต่ ร้อยละ $15-25$ ของน้ำหนักแป้ง จะทำให้กลิ่นและรส ชาติของช้าวเกรียบแตกต่างจากข้าวเกรียบแป้งมันสำปะ หลังล้วนๆ อย่างมีนัยสำคัญทางสถิติ $(\mathrm{P}<.05)$ เนื้อ สัมผัส (ความกรอบ) ของข้าวเกรียบที่เติมแป้งเมล็ดฝ้าย ร้อยละ 25 มีความกรอบแข็งมาก (1.8 คะแนน) ความ พองตัวจะน้อยที่สุด (1.4 คะแนน) ปรากฎว่าข้าวเกรียบ ที่เติมแป้งเมล็คฝ้ายไร้ต่อมพิษร้อยละ 10 ได้รับคะแนน การยอมรับมากที่สุศ คือ 4 คะแนน (ชอบมาก) ใน ขณะที่ข้าวเกรียบแป้งมันสำปะหลังล้วน ได้คะแนน3.1 (ชอบปานกลาง) แตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($\mathrm{P}<.05$)

องค์ประกอบทางเคมีของผลิตภัณฑ์ จาก Table 3 แป้งเมล็ดฝ้าย่ไร้ต่อมพิษชนิคไขมันต่ำมีปริมาณ โปรตีนสูงถึงร้อยละ 47.27 และไขมันร้อยละ 18.73 เปรียบเทียบกับแป้งมันสำปะหลัง (Tapioca starch) โดยทั่วไปมีโปรตึนร้อยละ 0.50 และไขมันร้อยละ

Table 1 Bulk density and percent expansion (thickness) of control and 5-25\% GCSF-cassava crackers.

Cracker sample	Bulk density $\mathrm{gm} / 100 \mathrm{ml}$	Thickness Before frying (mm.)	After frying (mm.)	Expansion $(\%)$
Control Cracker	17.6	1.6	3.5	118.75
5% GCSF-Cassava cracker	15.0	1.4	4.1	182.86
10% GCSF-Cassava cracker	18.2	1.6	3.7	131.25
15% GCSF-Cassava cracker	27.2	1.5	2.7	80.00
20% GCSF-Cassava cracker	43.5	1.6	3.0	87.5
25% GCSF-Cassava cracker	50.9	1.6	2.6	02.5

Table 2 Taste panel evaluation of control and 5-25 \% GCSF-cassava cracker.

Cracker sample	Color	Odor	Taste	Texture	Puffness Accepta- bility	
Control Cracker	4.8^{a}	4.7^{a}	4.8^{a}	4.9^{a}	4.4^{a}	3.1^{a}
5% GCSF-Cassava cracker	$4.8^{\mathrm{a}^{*}}$	4.8^{a}	4.5^{a}	3.8^{b}	3.8 b	3.3^{a}
10% GCSF-Cassava cracker	3.8^{b}	4.4^{a}	4.6^{a}	4.8^{a}	4.1^{ab}	4.0^{b}
15% GCSF-Cassava cracker	2.8^{c}	3.8^{b}	4.0^{b}	2.8^{c}	2.1^{d}	2.1^{c}
20% GCSF-Cassava cracker	2.1^{d}	3.6^{b}	3.6^{c}	2.7^{c}	2.1^{c}	2.0^{c}
25% GCSF-Cassava cracker	1.3^{e}	3.8^{b}	3.2^{d}	1.8^{d}	1.4^{d}	1.5^{d}

* Means having the same superscripts in each column are not significantly different at the . 05 level by Duncan's Multiple Range Test

Table 3 Proximate analysis of lowfat glandless cottonseed flour, control and 5-25\% GCSFCassava cracker.

Cracker Sample	Moisture $(\%)$	Protein $(\%)$	Fat $(\%)$		Carbohydrate $(\%)$	Ash $(\%)$
Low fat-GCSF	8.30	47.27	18.73	16.78	6.84	2.08
Control Cracker	13.58	1.89	2.14	80.04	2.06	0.29
5\% GCSF-Cassava cracker	13.60	3.69	1.66	77.39	2.84	0.82
10% GCSF-Cassava cracker	13.37	5.24	3.54	74.52	2.75	0.58
15% GCSF-Cassava cracker	11.93	7.68	1.11	75.27	3.39	0.64
20% GCSF-Cassava cracker	13.18	9.36	2.03	71.86	3.32	0.24
25% GCSF-Caasava cracker	12.24	11.14	2.38	89.18	3.70	1.36

0.80 (สมชาย และคณะ2534) ดังนั้น การเติมเป้้ง สมชาย ประภาวัต วันเพ็ญ มีสมญูา และ เพลินใจ เมล็ดฝ้ายไร้ต่อมพิษลงในส่วนประกอบของข้าวเกรียบ จะ ทำให้ปริมาณไปรตีนสูงกว่าข้าวเกรียบแป้งมันสำปะหลัง ล้วนๆ โดยเฉพาะข้าวเกรียบที่เติมแป้งเมล็คฝ้ายไร้ต่อม พืษ 10% ซึ่งไต้รับคะแนนการยอมรับสูงสุคมีปริมาณ โปรตีนร้อยละ 5.24 ซึ่งมากกว่าข้าวเกรียบที่ทำจากแป้ง มันสำปะหลังล้วนที่มีปริมาณโปรตีนร้อยสะ 1.89

สรุป

การเติมแป้งเมล็ดฝ้ายไร้ต่อมพิษลงในส่วน ประกอบของข้าวเกรียบในปริมาณร้อยละ $5-25$ ของน้ำ หนักแป้งมันสำปะหลัง ถะมีผลต่อลักษณะ กี กลิ่น รสชาติ ความกรอบ และการพองตัวของข้าวเกรียบ จากการศึกษา พบว่า สามารณแติมแป้งเมล์ดฝ้ายไร้ต่อมพิษในปริมาณ มากที่สุด คือร้อยละ 10 ของน้ำหนักแป้ง โคยที่ได้คะแนน การยอมรับอยู่ในเกณฑ์ชอบมาก ลักษณะผลิตภัณฑ์จะมีสี ขาวอมเหลือง กลิ่นสาบน้อยมาก ไม่มีรสขม กรอบแข็ง น้อย พองมาก ปรีมาณโปรตีน แสะไขมันร้อยละ 5.24 และ 3.54 ตามลำคับ ซึ่งมากกว่าข้าวเกรียบแป้งมันสำปะหลัง ล้วน ร้อยละ 3.35 และร้อยละ 1.40 ตามลำคับ

เอกสารอ้างอิง

ควงใจ ทิระบาล และ นงนุช รักสกุลไทย 2633. ปัจจัย ขางประการที่มีผลต่อคุณภาพของข้าวเกรียบปลา. อาหาร 20(1) : 11-17.

ตังคณะกุล 2534. การทำข้าวเกรียบเสริมโปรตีน ด้วยแป้งถั่วเหลืองชนิตไขมันเต็มและแปไง ถั่วลิสงพร่องไขมัน. วารสารริชาการเกษตร $\theta(2):$ 93-101.
A.O.A.C. 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. 15th ed., Association of Official Analytical Chemists, Inc., Arlington, Virginia. Bourely, J. 1987. Glandless cotton, a source of food proteins. Present situation and future prospects after the Abidjan colloquium. Cot. Fib. Trop., VolXLII, fasc. 1 : 59-63.

Lusas, E.W. and G.M. Jividen. 1887. Characteristics and uses of glandless cottonseed food protein ingredients. JAOCS. 64(7) : 973-986.

Reungmaneepaitoon, S. 1993. Utilization of glandless cottonseed flour in noodle production, pp. 190-202. In Document for Discussion the Doras Project Review and Evaluation Meeting 24-25 August 1993, Kasetsart University.

Yu, S.Y. 1981. Production and acceptability testing of fish crackers (keropok') prepared by the extrusion method. J. Food Technol. 16 : 51-58

[^0]: 1 สถาบันค้นคร้ามเละพัฒนาศลิตภัณฑ์อาหาร มหาวิทยาลัยเกษตรศาสตร์
 Institute of Food Research and Product Development,Kasetsart University, Bangkok 10803, Thailand.

